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Exp 04 The d’Arsonval Galvanometer
To be Read: Note 06

In this experiment you will study the meter movement of a d’Arsonval galvanometer as a harmonic
oscillator. The experiment has four parts. In Part A you will find the internal resistance and deflection
sensitivity of the meter movement. In Part B you will investigate the steady state and transient responses
of the meter movement. In Part C you will study how altering the resistance of the external circuit
connected to the galvanometer affects the dynamic response of the meter movement. In Part D you will
study the ballistic property of the galvanometer, that is, its response to a current impulse of duration
short compared to the natural period of the meter movement. You will use the ballistic response of the
galvanometer in two practical applications of your choosing.

Getting Started
In this experiment you will need the following
apparatus:

• 1 galvanometer Walden Precision Apparatus WPA
K120 series (K121, K122 or K123)

• 1 resistance box 1 kΩ maximum
• 1 resistance box 10 kΩ maximum
• 1 specially designed 3 MΩ resistance box
• 1 1.25V standard voltage source
• 1 plastic coil form (2-3 cm diam., 0.5 cm length)
• 3 metres enameled Cu wire 26 A.W.G.
• 1 stopwatch
• 1 specially designed capacitor box with single pole

double throw switch (0.47µF or 0.5 µF)
You will also need access for a few minutes to a large
magnet (either permanent or electromagnet).

In this experiment you will study the movement of
the galvanometer as a mechanical torsional oscillator.
It is therefore important for you to know the equation
of motion of this oscillator. The theory below is
expressly developed for the meter movement and is
edited from the WPA manual. The basic mathematics
is given in Note 06.

Preview of the d’Arsonval Galvanometer
You have already studied the DC characteristics of
one example of a d'Arsonval meter movement in
Experiment 01, “DC Circuits and Measurements”.
Currents required for full scale deflection (FSD) for
that instrument were typically 50 µA. The galvan-
ometer you will use in this experiment is much more
sensitive, giving FSD for currents of the order of 1 µA.
This kind of sensitivity makes the instrument useful
in more demanding applications.

The meter movement of a d'Arsonval galvanometer
is a rectangular coil of wire suspended in a horizontal
radial magnetic field (Figure 4-1. The current to be
measured flows through the coil via the suspension

wire above and a light metal spiral below. When the
coil rotates from its equilibrium position, the upper
suspension exerts a restoring torque on the coil. The
rotation is measured by means of an optical lever,
which consists of a light source, a mirror attached to
the coil, and a scale.

Rotation of the coil is induced by magnetic forces
exerting a torque on the coil proportional to the cur-
rent flowing through it. Under steady state condit-
ions, the angular deflection of the coil and light spot is
proportional to the DC current flowing in the instru-
ment. The galvanometer is ingeniously made. For
details on its construction see the appendix at the end
of this note.

Figure 4-1. Galvo coil in a radial magnetic field B.

Theory: Equation of Motion
of the Galvanometer Coil

The coil (Figure 4-1) is a rectangular coil of N  turns of
wire with vertical sides of length l and horizontal
sides of length x. The coil is immersed in a radial
magnetic field B produced by an internal permanent
magnet. This means that when a current i flows in the
coil a torque τi is exerted on the coil given by 1

€ 

τ i = NlxBi = NABi , …[4-1]

                                                                        
1 We use the symbol i here for current to avoid confusion with the
symbol I that is reserved for the moment of inertia.
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where A is the area of the coil. When the coil twists by
an angle θ (radians) from equilibrium the suspension
wire exerts a restoring torque on the coil given by the
angular version of Hooke’s law:

€ 

τ S = −kθ , …[4-2]

where k  is the torsion constant of the elastic
suspension. There is also a torque, proportional to the
angular velocity of the coil, which is mainly due to air
resistance when the coil is moving. This damping
torque can be expressed as:

€ 

τm = −α
dθ
dt

 . …[4-3]

If the coil has a moment of inertia I, then the coil’s
equation of motion is:

€ 

I d
2θ
dt 2

= NABi − kθ −α dθ
dt

 . …[4-4]

To eliminate i from eq[4-4] we must find a second
equation linking the mechanical variable θ and the
electric current i. The current i that flows is supplied
by an external circuit, which can always be denoted
by its Thevenin equivalent. Neglecting the normally
tiny effects of the self inductance and capacitance of
the coil, the equivalent circuit of the external circuit
and coil can be indicated as shown in Figure 4-2. Req is
the source resistance and R I is the resistance of the
coil.

Figure 4-2. Equivalent circuit of galvometer coil and
external circuit.

When the coil moves in a field B an emf vg is induced
in the coil given by

€ 

vg = NAB dθ
dt

 . …[4-5]

(show this in your report). Writing Req + RI ≡  R the
deflection θ is related to the current i by

€ 

v = Ri + vg = Ri + NAB dθ
dt

 . …[4-6]

Substituting i from eq[4-6] into [4-4], eq[4-4] becomes

€ 

I d
2θ
dt 2

+ α +
(NAB)2

R
 

 
 

 

 
 
dθ
dt

+ kθ =
NABv
R

. …[4-7]

This is an equation in θ. It is somewhat more conven-
ient to express it in terms of the scale deflection s,
which for small deflections is related to θ by s ≈ 2Lθ
(see note 3 in Part A below). The result is

€ 

I d
2s
dt 2

+ α +
(NAB)2

R
 

 
 

 

 
 
ds
dt

+ ks =
2LNABv

R
…[4-8]

In what follows we shall solve this equation for a
number of special conditions.

Static (Steady State) Response
When the galvanometer deflection is steady so that all
the time derivatives in eq[4-8] are zero, v = Ri, and
eq[4-8] has the solution

€ 

s =
2LNAB

k
v
R

=
2LNAB

k
i . …[4-9]

We define the deflection sensitivity of the galvanometer
to be a constant K , where s = Ki. Substituting this
definition into eq[4-9] we get an explicit expression
for K:

€ 

K =
2LNAB

k
. …[4-10]

Thus if K is known then the current i can be calculated
from a measurement of s. This is arguably the most
common use of the galvanometer.

Dynamic (Oscillatory) Response
For convenience we rewrite eq[4-8] in the standard
form of a second order differential equation:

€ 

d2s
dt 2

+η
ds
dt

+ω0
2s =ω0

2K v
R

, …[4-11]
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where

€ 

η =
α +

(NAB)2

R
I

, …[4-12]

and

€ 

ω0
2 =

k
I

 . …[4-13]

This is the well known equation of a damped harmon-
ic oscillator. η is called the “damping constant” of the
galvanometer coil, and ω0 the natural frequency of
free oscillations of the coil.

Suppose we start the coil moving, for example, with
a step function or impulse, and then set v = 0 (or a
constant—this would be equivalent to a shift of the
origin for s). Eq[4-11] then reduces to the homo-
geneous equation:

€ 

d2s
dt 2

+η
ds
dt

+ω0
2s = 0. …[4-14]

Solutions of this equation take three different forms
depending on the relative magnitudes of η and ω0. We
shall call these cases 1, 2 and 3.

Case1: Underdamping

If the damping is small, that is, if η2 < 4ω0
2, then the

solution of eq[4-14] is

€ 

s = s0e
−ηt / 2 sin(ωt + φ) , …[4-15]

where s0 and φ are determined by the initial condit-
ions, and

€ 

ω 2 =ω0
2 −

η2

4
. …[4-16]

Eq[4-15] is plotted in Figure 4-3. This is the classical
representation of the displacement of an under-
damped harmonic oscillator as a function of time. You
will be observing this kind of motion in Parts B and C.

When a working galvanometer is used in a practical
non-ballistic application, underdamping is usually of
only academic interest (as here). It is more important
that the galvanometer be critically damped so that it
takes up a new equilibrium position as quickly as
possible to enable the deflection to be read.

Figure 4-3. Typical displacement or deflection of an under-
damped oscillator as a function of time. X and Y mark suc-
cessive maxima in the coil’s displacement.

Case 2: Critical Damping

In the case of a special amount of damping, that is, if
η2 = 4ω0

2, the solution of eq[4-14] is

€ 

s = (A + Bt)e−ηt / 2 , …[4-17]

where A and B are determined by initial conditions.
This is the most desireable motion for a meter move-
ment as we have stated, since the movement, once
changed, takes a minimum time to come to a new
steady state.

Finally, it is possible for the amount of damping to be
greater than that necessary for critical damping. This
leads to what is known as an overdamped condition.

Case 3: Overdamping

If the damping is large, that is, if η2 > 4ω 0
2, then the

solution of eq[4-14] is:

€ 

s = A1e
−γ1t + A2e

−γ 2t , …[4-18]

where

€ 

γ1 =
η
2

+
1
2

η2 − 4ω0
2

…[4-19]

and

€ 

γ 2 =
η
2
−
1
2

η2 − 4ω0
2 .

Note that one of the time constants (γ1 here) is always
larger than η/2, and the other is smaller. This case is
seldom of practical interest in the context of galvan-
ometers, and you will not be concerned with this kind
of motion in this experiment.
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Now that we have completed the theory of motion of
the galvanometer meter movement we can move on to
the first activity.

Part A
Measuring Internal Resistance

and Deflection Sensitivity

Before you do anything read the caution and the notes
following.

*** CAUTION ***
A d'Arsonval galvanometer is an extremely delicate
instrument. It must be moved gently, always upright
and level, and ALWAYS with the switch turned to
“SHORT”.  (As you will see in part B, this gives the
maximum damping to the movement). NEVER pass
steady currents greater than about 1µA directly
through the galvo coil; in particular, never connect a
battery directly to the galvo terminals!  If you damage
an instrument through lack of attention to these pre-
cautions, you will be held responsible for the cost of
repair or replacement (approximately $200).

NOTES:
1 The galvanometers have a switch with several

positions, including “SHORT”, “DIRECT” and
“×1, ×10, etc.”. The SHORT position is used for
protection. Do all of your final measuring at the
DIRECT position, where the terminals on the
front of the instrument are connected directly to
the galvanometer coil. All the other positions con-
nect damping and current dividing resistors into
the circuit. You can use these other positions to
help “settle down” your galvo before you make a
measurement, but make your final measurements
on the DIRECT position.

2 Check the zero of the galvanometer before each
measurement, and adjust it if necessary.

3 The galvanometer scale is graduated in milli-
meters. As a convenience, the position s of the
light spot on the scale is taken to be proportional
to the deflection angle θ , and is taken as a
measure of θ. As you can see from Figure 4-4,  s =
Ltan2θ ≈ 2Lθ  if θ <<1 (radian), or if  s/L << 1. The
error is about 1% if s = L/4. From the value of  L
given on the case of your instrument, estimate at
what scale reading you would expect significant
departure from linearity. (You cannot measure L

yourself, since to do so you would have to open
up the case of the instrument and we cannot allow
you to do that.)

Figure 4-4. Geometry of the moving mirror deflection system
showing the meanings of L, s and θ.

Measuring Internal Resistance
Measure the internal resistance of the galvanometer in
a manner similar to that employed in Experiment 01,
“DC Circuits and Measurements”. As shown in Figure
4-5a, connect the 1.25V standard voltage source in
series with the 3 MΩ resistance box and select a
resistance value to give a reasonable deflection.

1 . 2 5  v

0. 5  t o  3 . 0  MΩ

R I

R s

1 . 2 5  v R P
+

R I

R s

+

(a) (b)
Figure 4-5. Circuits used in measuring a deflection (a) and
a half-deflection (b).

Note the deflection θ and the resistance RS. Now
connect a 1000 Ω resistance box across the galvo ter-
minals, as shown in Figure 4-5b and find the value of
this parallel resistance Rp which reduces the deflection
to “half” of the former value. “Half” is to be interpret-
ed as half the angular deflection, so you must correct
for the difference between 2θ and tan2θ as described
in note 3 above. Having done this you can calculate
the internal resistance RI from the expression

€ 

RI =
RpRS

RS − Rp

…[4-20]
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Measuring Deflection Sensitivity
Now remove Rp and measure the deflection θ for a
series of values of RS. Plot deflection θ versus current
i. Is there evidence of non-linearity associated with the
difference between 2θ and tan2θ? If so, correct for it,
and determine the deflection sensitivity (for small de-
flections) in mm/µA. Do this in a professional manner
with a program like pro Fit as described in Experiment
01. Before proceeding, verify that your value is in
reasonable agreement with the manufacturer's
specification given in Table A-1 in the appendix to
this guidesheet.

Part B
Dynamic Response

with No External Damping

In this part you will embark on the study of the gal-
vanometer coil as a torsional oscillator. Connect the
1.25V standard voltage source in series with the 3 MΩ
resistor box as shown in Figure 4-6 and set RS to give a
reasonable deflection. Open the series switch and
verify that the subsequent motion is oscillatory.
(Opening the series switch drops the driving current
to zero in a step function with the initial condition
shown in Figure 4-3.) Time the oscillations; repeat
several times to estimate the statistical uncertainty of
your measurement of the period. Calculate ω.

R s
s w i t c h

1. 2 5  v

0. 5  t o  3 . 0  MΩ
G a l v o
se t  t o

di r e c t

( ∞ )

+

Figure 4-6. Circuit to measure underdamped response (exter-
nal damping is zero).

If the damping is not too large (a reasonable criterion,
corresponding to uncertainties of order 1%, is η/2ω0 <
1/7, i.e., 1/7 of critical damping), the deflection
maxima can be considered to occur at the maxima of
sin(ωt+φ), and from eq[4-15], the ratio of amplitudes
at successive maxima (points X and Y on Figure 4-3) is

€ 

SY
SX

= e−ηT / 2 = e−λ . …[4-21]

The constant λ = ηT/2 is called the logarithmic decre-
ment. Record the amplitudes of as many successive
oscillations as you can measure with reasonable
accuracy. Repeat several times. Determine the
amplitude ratio of all pairs of successive oscillations,
and calculate the logarithmic decrement λ for free
oscillations of the galvanometer.

In this part of the experiment, the external resistance
R which enters in eq[4-12] is infinite. Hence, from
eq[4-12], η is given by:

€ 

η =η0 ≡
α
I

. …[4-22]

We introduce the notation η0 for this special value of
η.  Calculate ω0 and η0 for the galvanometer from your
experimental results.

Part C
Dynamic Response

with External Damping

It should be evident from eq[4-12] that an external
resistance R can provide additional damping of the
oscillatory motion, because of the coupling between
the electrical and mechanical systems. Connect a 10
kΩ resistance box across the galvanometer, and
measure the logarithmic decrement in the same way
as in Part B, for a number (about 6 or 8) resistance
values (choose values approximately equally spaced
in 1/R). Start by determining the resistance required
to give an amplitude ratio for successive oscillations
of about 3; you would find it hard to study more
heavily damped oscillations by eye. Determine the
damping constant η and period T self-consistently
from eq[4-16] and [4-21]; note that it is more accurate
to use eq[4-16] than to measure ω in a heavily damped
situation.

To calculate η self-consistently, calculate the first
estimate η0 = 2λ/T0 where T0 = 2π/ω 0. Then  use this
first estimate η0 to find a corrected ω1 using ω1

2 = ω0
2 –

(η0/2)2. From ω 1 calculate a corrected T1 (=2π/ω1),
calculate a new  estimate of η (η1 = 2λ/T1) and repeat
the iteration until the desired precision is achieved.
One or two iterations should suffice.

Plot η vs. 1/R; don't forget to include the point η0 at
1/R = 0. According to eq[4-12], your plot should be
linear. Fit a straight line by least squares (using pro
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Fit). From the slope you can determine (NAB)2/I. Since
you know ω0

2 = k/I  (eq[4-13]), K = 2L(NAB)/k (eq[4-10])
and L (given on the instrument), you can calculate the
spring constant k, the moment of inertia I, and the
product NAB for your galvanometer. Extrapolate your
plot to estimate the critical damping resistance R0, i.e.,
the external resistance for which η = 2ω0.

No doubt you have noticed that an undamped
galvanometer is awkward to use for measurement,
since it overshoots and takes a long time to settle.
Critical damping gives the fastest settling (recall that
in overdamped motion one exponential is always
slower than the critical exponential). Hence the critical
damping resistance is normally connected across the
galvanometer coil. Since R 0 is typically 10 or more
times larger than the coil resistance R I, the overall
sensitivity is reduced only by 10% or less. Such a
resistance is, in fact, connected when you turn the
selector switch to “ ×1, ×10, etc.”.

Part D
The Galvanometer

as a Ballistic Instrument

In this part of the experiment you will use the
galvanometer as a ballistic instrument, that is, as an
instrument that responds to an impulse (short burst)
of charge. It is in this kind of application that the
galvanometer is superior to digital instruments. You
are expected to complete two of the three activities
below.

1 Measuring a Charge Pulse
Suppose we pass an impulse of current through the
galvanometer coil over an elapsed time much less
than the natural period of the coil’s motion T0 =
2π/ω0. The coil will start to move. If the galvanometer
coil starts from rest and is fairly well underdamped,
(again η < ηc/7 is the criterion for 1% accuracy) then
the subsequent motion will be a damped sinusoid:

€ 

s = s0e
−ηt / 2 sin(ωt) . …[4-23]

The initial velocity resulting from the impulsive
torque produced by the impulsive current will be:

€ 

ds
dt
 

  t  =  0+

=ω0
2KQ , …[4-24]

where 

€ 

Q = idt∫ ,

is the total charge which flows through the galvan-
ometer coil. (Prove this for yourself, and include the
proof in your report).  From eq[4-23]

€ 

ds
dt
 

  t  =  0+

=ω0s0 =ω0
2KQ . …[4-24]

Therefore

€ 

s0 =ω0KQ . …[4-25]

You can use the approximation ω ≈ ω0 which is valid
for low damping. The first maximum of oscillation is
reached at t ≈ T/4 and the peak deflection is

€ 

smax =ω0KQe
−(η / 2)(T / 4) =ω0KQe

−λ / 4 . …[4-26]

So, by (quickly) measuring the peak deflection smax,
and knowing the numerical values of ω0, K and λ, you
can calculate the total charge flowing in the current
pulse through the galvanometer. The ballistic galvan-
ometer enables you to measure charge in a way that is
not possible with a conventional digital multimeter.

2 Measuring Charge on a Capacitor
To measure the charge on a capacitor, connect a 1.25V
standard voltage source to the capacitor box which
contains an SPDT switch, 1 MΩ resistor, and 0.5 µF
capacitor as shown in Figure 4-7. Charge the capacitor
by switching to the battery side for a few seconds.
With the galvanometer coil initially at rest at zero,
discharge the capacitor through the galvanometer.
Quickly record the amplitudes of successive maxima,
determine  λ, and calculate the charge Q which passed
through the coil. How does Q  compare with the
product CV?

1 . 2 5  v

G a l v o
se t  t o
di r e c t

1  M Ω

C =
0 . 5 µ F

ba t te r y G a l v o

c a p a c i to r  b o x

+

Figure 4-7. Circuit to measure the charge on a capacitor.

Verify, by switching out the capacitor after it has dis-
charged, that its presence has a negligible effect on the
motion of the galvanometer.
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3 Measuring the Field of a Magnet
To use the galvanometer to measure the magnetic
field of a magnet you need a search coil. To make one
wind 10 turns of 26 AWG enamelled Cu wire onto the
coil form provided. Leave about 1/2 meter extra wire
at each end. Tape the coil so it won't unravel, cut the
ends to equal length, and twist them uniformly.  (Ask
your demonstrator to help you do this with an electric
drill.) Bare the metal at the free ends.

Connect this coil in series with a resistance Rs > 7R 0
to the galvanometer as shown in Figure 4-8. Note that
in this case a series resistor must be provided; other-
wise the total resistance would be effectively the galvo
coil resistance and the galvo would be heavily over-
damped. Move the coil swiftly by hand into (or out of)
a magnetic field; for accurate measurements, hold the
axis of the coil in your fingers parallel to the direction
of the field.

Galvo
set to
direct

B

coil
n turns
area A

RS

Figure 4-8.  Measuring the field of a magnet with a search
coil.

The emf generated in a coil of n  turns of area A by a
changing magnetic field is given by Faraday and
Lenz’s laws:

€ 

v = −n dΦ
dt

= −nA dB
dt

. …[4-27]

If the coil is moved from a region of field B to one of
zero field, then

€ 

vdt∫ = −nA dB
dt
dt∫ = nAB . …[4-28]

But this emf produces an impulsive current i in the
coil and galvanometer given by

€ 

i =
v
R

, …[4-29]

where R is the total series resistance Rs + RI. Hence the
impulsive charge which flows is

€ 

Q = idt∫ =
vdt∫
R

=
nAB
R

. …[4-30]

Note the response of the galvo. If it goes off scale, then
increase Rs. From the amplitudes of successive oscilla-
tions, calculate the decrement λ and then calculate the
charge Q which flowed through the coil.  Measure the
diameter of the search coil, calculate the area A, and
finally calculate the strength of the magnetic field B
from your measured Q.

CHALLENGE: Do an internet search for a similar
experiment done at another university, and from
which this experiment might be improved upon.

Tidying Up
Before leaving your station in the lab, turn off all the
powered equipment. Put away all connecting wires so
your work station looks the same as when you found
it. Thank you.
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Appendix
The Walden Precision Apparatus
WPA K120 Series Galvanometer

The following description is extracted and modified from the WPA manual.

Optics

The sensitivity of a galvanometer can be improved in
two ways: either by decreasing the strength of the sus-
pension or increasing the scale-to-movement distance.
The optical system of the K120 series galvanometer
(Figure A-1) is double reflecting, a return mirror gives
an effective pointer length of almost twice that of the
instrument case.

Figure A-1. Optical arrangement of the K120 series galvan-
ometer. For more details of the suspension positioned in the
lower left of the instrument case see Figure A-2.

The light Source is a Krypton-filled low Volt, 1 Amp
bulb—produced according to Ministry Specification.
A spare bulb is fitted in the case and a further supply
can be obtained on request. Instructions for changing
the bulb are printed on the inside of the lid. The lamp
indicator shows the bulb to be alight and is a highly
refractive plastic light pipe which carries the light
through a 90° bend to the front panel. Illumination of
the light spot is outstandingly high, giving a comfort-
able view even in a sunlit laboratory.

The galvanometer mirror is spherical of 11 cm focal
length.

Mains feed is to a built-in double wound transformer
with tapped primary 115, 200 and 240 Volts, AC., 50-
60 cps.

Movement

The delicate parts of the movement are protected by a
metal outer case, the sectional drawing in Figure A-2
illustrates the arrangement.

Figure A-2. The galvanometer suspension.

Coil. The coil is wound with non-magnetic or spec-
trographically pure copper wire, where the ferrous
impurities are controlled down to two parts per
million, and the basic material is more precious than
gold. The coil is bonded in epoxy resin for maximum
strength and stability.

Tangs. Tangs are carefully proportioned to ensure a
firm grip on the coil.  The material is as critical as the
coil wire.

Suspension. The suspension is made from non-corrod-
ing noble metal alloy supplied to our specification and
rolled to a strip by a specially designed mill. The



 Exp 04

E4-9

breaking strength of this alloy is 73 tons per sq. inch,
so that a wire as thick as an average human hair will
safely hold half-a-pound.

Pre-Twist of suspension. A plainly rolled and anchor-
ed suspension strip causes perceptible hysteresis and
thus “zero” error. The WPA pre-twisted suspension is
unique and provides outstanding zero stability.

Anti-Vibration stops. Anti-Vibration stops limit the
sideways movement of the coil. With the well design-
ed vibration stops a K120-type galvanometer can be
dropped from 1 ft., on to a wooden bench, or in the
delivery packing 14 drops from 4 ft. on to concrete,
without ill effects.

Oil-Bead Damping. Oil-bead damping smooths out
any unwanted vibration of the coil so that our galvan-
ometers can even be used under slightly vibrating
conditions.

Slow motion zero setting. Several turns of the zero
knob move the light spot from one end of the scale to
the other. The hair line can, of course, be set to any
point of the scale.

Circuit

The sensitivity is controlled by a 2-pole 6-way switch
with silver contacts. The resistors are of 1% accuracy.

The switch positions are:

Shorted position. The input circuit is broken and the
movement is shorted for its protection in transit.

×1 position. The galvanometer movement is shunted
by an internal damping resistor as shown in Figure A-
3. This setting provides the maximum sensitivity with
near critical damping.

× .03 and ×.001 positions. The current sensitivity is
reduced by an Ayrton-Mather shunt by .03 and .001
with respect to the ×1 range. In addition, series
resistors are introduced to keep the same input
resistance as on the ×1 range. Figure A-4 shows the
circuits.

Series position. To be used if the exterior circuit
resistance is so low that the light spot would creep. At
this switch settting a series resistance is introduced to
improve the speed of response.

Direct position. The movement is connected straight
to the terminals without any shunts, giving the
highest sensitivity with no interior damping.

Figure A-3. Circuit for x1 position.

Figure A-4. Circuit for x.03 and .001 positions.

As can be seen in Table A-1, WPA K120-type galvan-
ometers differ as to sensitivity, internal resistance and
critical damping resistance.

Table A-1. Manufacturer’s Data on WPA K120-type
Galvanometers. The value of L is given on the case of the
instrument.

Type Sensitivity
(mm/µA)

Internal
Resistance

RI (Ω)

Critical
Damping
Resistance

(Ω)

Period
(s)

K121 25 12 30 2
K122 60 25 300 2
K123 120 52 1000 2
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